這一可兼容核磁共振成像的影像導航聚焦超聲系統由一套電腦控制的高精度三維定位系統和高能的聚焦超聲轉換器組成。定位系統能夠精準地向毫米大小的區域輸送聚焦超聲能量到軟組織。這一系統專門用于研究從小到大的動物模型,從而探究超聲-組織相互作用,在用于人體之前評價**方法的**性,可匹配臨床MR和CT掃描儀從而完成影像導航的**計劃和遞送。該系統完全無磁性,因而可以與高場核磁成像儀共同工作,還可匹配X射線CT成像。 設備暫時性開放血腦屏障的效果非常好, 不會長期破壞人體的血腦屏障,大約12小時后,血腦屏障即恢復完好,重新開始為大腦阻擋有害物質
RK-100磁共振成像影像導航的血腦屏障聚焦超聲系統
這一可兼容核磁共振成像的影像導航聚焦超聲系統由一套電腦控制的高精度三維定位系統和高能的聚焦超聲轉換器組成。
定位系統能夠精準地向毫米大小的區域輸送聚焦超聲能量到軟組織。這一系統專門用于研究從小到大的動物模型,從而探究超聲-組織相互作用,在用于人體之前評價**方法的**性,可匹配臨床MR和CT掃描儀從而完成影像導航的**計劃和遞送。該系統完全無磁性,因而可以與高場核磁成像儀共同工作,還可匹配X射線CT成像。
這一無磁性定位系統能夠在成像時沿著任意3D路徑調動轉換器;超聲劑量的遞送用通過MRI或者CT的影像實現,具體依賴系統的配置;實時監控前進方向,轉換器接收反射的電能從而保證一致的能量傳輸。
該系統能夠遞送從軟組織熱凝結的高能連續聲波降解,到適用于例如組織裂解、**傳輸或者血管透化等用途的脈沖聲波降解所需的劑量。因為該系統設計用于研究,所以非常靈活,用戶可以根據需要自由設置。
磁共振引導聚焦超聲助科學家突破血腦屏障
—RK-100磁共振引導的血腦屏障聚焦超聲系統
背景:
血腦屏障是大腦的內皮細胞,這些細胞形成的多層膜緊緊包裹住大腦中的所有血管,阻擋**、病毒和其他有害物質進入大腦。但是,血腦屏障對大多數**具有屏蔽作用。當醫生在**腦部腫瘤或神經系統**時,只有約25%的**能夠進入大腦,這使得**變得異常困難。森尼布魯克保健中心利用磁共振引導聚焦超聲技術,在不進行開顱手術的情況下突破了人體的血腦屏障,從而使得有效**能夠順利進入腦部,達到**的效果。更加令人鼓舞的是,該技術并不會長期破壞人體的血腦屏障。大約12小時后,血腦屏障即恢復完好,重新開始為大腦阻擋有害物質。
磁共振引導聚焦超聲設備突破了大腦的血腦屏障,從而能夠在不進行手術的情況下,提高多種腦部**的**水平,例如腦腫瘤、帕金森氏癥,和阿爾茨海默氏癥等。此舉對神經科學領域意義重大。
原理與應用步驟:
研究人員首先為患腦癌患者注射一種化療**的微泡,微泡隨后擴散至向腦部血管中。接下來,患者配戴立體定位神經系統的超聲波發射器,研究人員借助磁共振引導聚焦超聲設備精準發射高強度聚焦超聲束,從而引起微泡振動,迫使構成血腦屏障的內皮細胞分開。血液中的化療**便可從間隙中穿過,到達腫瘤細胞附近
運用磁共振引導聚焦超聲設備暫時性開放血腦屏障的效果非常好, 不會長期破壞人體的血腦屏障,大約12小時后,血腦屏障即恢復完好,重新開始為大腦阻擋有害物質。這一劃時代的突破將會為絕望的病人帶來新的希望.
應用文獻:
|
Studies using FUS Instruments’ Systems |
|
|
Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7. |
|
|
Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439. |
|
|
Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745. |
|
|
Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087. |
|
|
Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood? brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132. |
|
|
Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100. |
|
| . |
Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049. |
| . |
Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052. |
|
Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899. |
|
|
Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428. |
|
|
Jord?o, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29. |
|
|
Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in ***** mice.” Brain stimulation 7.2 (2013): 304-307. |
|
|
Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.
|
|
|
Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.
|
|
|
Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.
|
|
|
Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.
|
|
|
Jord?o, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.
|
|
|
Blood-Brain Barrier Disruption Studies |
|
|
Leinenga, Gerhard, and Jürgen G?tz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.
|
|
|
Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.
|
|
|
McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.
|
|
|
Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725. |
|
|
Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.
|
|
|
Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090. |
|
|
Relevant Review Papers |
|
|
Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.
|
|
|
O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396. |
|