整合升級AMTI微型稱重傳感器,18618101725(微信同),QQ:736597338 ,信箱s...
·避免處理多個供應商的麻煩,MotionMmonitor支持團隊一鍵式呼叫將解決硬件和軟件相關問題。
·便捷、強大、的分析:
系統內置的下拉菜單,一鍵式按鈕進行、系統化的高質量數據分析,也可以自定義界面,創建圖標驅動接口,便于快速和簡單的設置,集合和分析過程。圖標確保以所有運算符以一致方式收集數據,從而減少了過程中的錯誤引入。
- ●一套交鑰匙3D動作與運動捕捉、分析系統,平臺旨在分析各種動作與運動的所有方面
- ●集各家之長為我所用:支持并提供廣泛市面上幾乎所有動作、運動硬件
- ●能夠將您的研究轉化為您自己的臨床、教學、人體工程學或運動應用
- ●全套、完整的多多尺度的生物力學研究和康復軟件
- ●根據需求一站式靈活選配,滿足各種運動與動作捕捉、監測、分析
- ●提供更加化、系統化的運動動作捕獲分析數據(包括骨骼、肌肉、血管、神經以及外部刺激等)
- ●完整的一站式交鑰匙3D動作捕捉分析系統:集成所有市面主流動作、運動硬件之長,系統化的數據深挖、分析、整合。
- ●支持從廣泛的硬件(所有市面主流動作、運動硬件)進行實時采集。
- ●使用測力臺、手傳感器、EMG、眼動追蹤、視頻、EEG、虛擬現實、觸覺和模擬數據同步采集運動數據,簡化采集和分析。
- ●通過原始或處理數據的圖形顯示提供即時回放。
- ●無需編程工作——從設置到數據收集再到分析,操作可以通過單選按鈕和下拉菜單完成。
- ●提供跨各種硬件系統的通用軟件平臺,可取各家之長、更高性價比。
- ●廣泛的功能和能力的多樣性,支持各種應用程序。
- ●市場上的數據采集、分析和可視化系統可測量人體運動、動作的所有方面。
基礎硬件:motionmonitor?可集成各種捕捉硬件的系統裝置及完全同步采集分析多源數據的軟件
支持各種捕捉技術:確保技術性價比
支持各種外圍設備:實現人體動作捕捉分析所有方面
我們幫助您選擇并集成外圍系統,確保實現您獨特的目標。
各種捕捉相機、位置跟蹤器、EMG(肌電圖)、測力臺、儀器式跑步機、儀器式樓梯、手傳感器、EEG腦電圖、定量腦電圖(quantitative EEG,qEEG)系統、數字視頻、事件標記和其他模擬設備、虛擬現實和觸覺設備等等。
一站交鑰匙式服務:避免處理多個供應商的麻煩,MotionMmonitor支持團隊一鍵式呼叫將解決硬件和軟件相關問題:
二、神經科學與運動控制
人體運動源于神經、肌肉和骨骼系統之間的協調互動。盡管了解運動神經肌肉和肌肉骨骼功能的潛在機制,但目前還沒有對復合神經肌肉骨骼系統中神經機械相互作用的相關實驗理解。這是理解人類運動的主要挑戰。
為了解決這個問題,MotionMonitor開發了綜合多尺度建模平臺,包括肌肉、骨骼和神經模型等等。我們使用**的高密度肌電圖 (HD-EMG) 與盲源分離相結合,將干擾 HD-EMG 信號識別到由同時控制許多肌肉纖維的脊髓運動神經元放電的尖峰列車集合中。我們開發了由體內運動神經元放電驅動的多尺度肌肉骨骼建模公式,用于計算所得肌肉骨骼力的高保真估計。這將使神經控制的肌肉組織如何與骨骼組織相互作用的分析能力qian所未有,因此將為了解神經肌肉/骨科ji病的病因、診斷和治liao開辟新的途徑。

神經科學和運動控制的研究受益于內置于我們方案的各種硬件和分析。
使用任何 Tobii 頭戴式眼動追蹤系統來捕捉與其他數據同步的實時 3D 眼動數據。分析視線交叉點。
使用 Biosemi 或 AntNeuro 硬件捕獲 EEG 數據。適用于坐姿、站立和活躍的任務。根據其他運動學數據在 EEG 數據中創建用戶定義的興趣點。
實時呈現視覺、聽覺和觸覺提示。可以使用簡單的幾何形狀、條形圖或時間序列圖或特定于應用程序的視覺效果(如紅綠燈)以多種方式呈現用戶定義的視覺提示。
使用 監視器r 與 Unity 和 World Viz 的雙向通信將視覺反饋擴展到虛擬現實。 3D 可視化可以以多種方式呈現。一些例子包括:
手部實驗室:專為上肢研究設計的立體屏幕和桁架系統。為主體提供與屏幕上或屏幕前呈現的 3D 虛擬對象進行交互的能力。
沉浸式顯示器:一個完整的硬件和軟件解決方案,當手臂的可視化被隱藏或擾動時,使用同位半鏡屏幕進行研究。
綜合研究環境系統 (IRES):與 Bertec 合作創建的研究質量環境。配備帶 3D 動作捕捉系統和儀表跑步機的沉浸式 VR 圓頂。
三、康復與人體工程學:
我公司另外同一站式細胞組織材料生物力學和生物打印等生物醫學工程科研服務-10年經驗支持,
關于運動控制,帕金森氏癥是個熟悉的詞語。帕金森氏癥的表現是肌肉僵直、身體姿勢和自主運動產生障礙,即不能夠產生自主運動(常常是動作扭曲變形、缺乏靈活性)。研究發現,帕金森氏癥與黑質(黑質是腦干的核團,是基底神經節的一部分)壞死有關。黑質損傷使得多巴胺無法正常生產,而多巴胺是興奮性神經遞質,多巴胺的耗竭、基底神經節的輸出會對大腦皮質運動組織產生持續抑制,從而抑制了運動。
運動系統的結構
運動是在肌肉的狀態變化中完成的。肌肉由彈性纖維組成,彈性纖維與骨骼在關節處相連,通常會組成拮抗的一對,使得效應器(身體可以運動的部分)收縮或伸展:如果要產生運動,就會有一個興奮性信號傳遞給主動肌,一個抑制信號傳遞給拮抗肌(否則拮抗肌會將主動肌拉回到原始的位置)。
肌肉的運動和神經系統之間是靠α運動神經元進行相互作用的,α運動神經元起始于脊髓,終止于肌肉,在肌肉處通過神經遞質傳導信號促使肌肉產生運動。
較的系統,如通過錐體系(即皮質脊髓束,起始于皮質,終止于延髓椎體)或錐體外系(腦干中能夠直接投射下行纖維的通路,往往起始于腦干中的核團)控制肌肉運動的部分。其中,錐體系發出信號的,是控制運動的初級運動皮質;而錐體外系,如基底神經節(五個核團的總稱),尾狀核和殼核負責信息輸入,蒼白球內側部分和黑質的一部分負責信息輸出。像皮質脊髓束這樣的通路,是近的進化的產物,只在哺乳動物中出現,給哺乳動物帶來了很大的靈活性(不用僅僅靠簡單反射活動來行動)。