動作捕捉生物力學評價分析系統,18618101725(微信同),QQ:736597338 ,信箱slby800@163.com
美國motionmonitorTM 一站式動作實時捕捉與多源數據完全實時同步分析系統
-
●一套交鑰匙3D動作與運動捕捉、分析系統,平臺旨在分析各種動作與運動的所有方面
-
●集各家之長為我所用:支持并提供廣泛市面上幾乎所有動作、運動硬件
-
●能夠將您的研究轉化為您自己的臨床、教學、人體工程學或運動應用
-
●全套、完整的多多尺度的生物力學研究和康復軟件
-
●根據需求一站式靈活選配,滿足各種運動與動作捕捉、監測、分析
-
●提供更加化、系統化的運動動作捕獲分析數據(包括骨骼、肌肉、血管、神經以及外部刺激等)
-
●完整的一站式交鑰匙3D動作捕捉分析系統:集成所有市面主流動作、運動硬件之長,系統化的數據深挖、分析、整合。
-
●支持從廣泛的硬件(所有市面主流動作、運動硬件)進行實時采集。
-
●使用測力臺、手傳感器、EMG、眼動追蹤、視頻、EEG、虛擬現實、觸覺和模擬數據同步采集運動數據,簡化采集和分析。
-
●通過原始或處理數據的圖形顯示提供即時回放。
-
●無需編程工作——從設置到數據收集再到分析,操作可以通過單選按鈕和下拉菜單完成。
-
●提供跨各種硬件系統的通用軟件平臺,可取各家之長、更高性價比。
-
●廣泛的功能和能力的多樣性,支持各種應用程序。
-
●市場上的數據采集、分析和可視化系統可測量人體運動、動作的所有方面。
基礎硬件:motionmonitor可集成各種捕捉硬件的系統裝置及完全同步采集分析多源數據的軟件
據您的需求量身定制的方案幫助您確定合適的motionmonitor系統配置(臺式機或各種便攜式筆記本配置中選擇)
支持各種捕捉技術:確保技術性價比
支持各種外圍設備:實現人體動作捕捉分析所有方面
一站交鑰匙式服務:避免處理多個供應商的麻煩,MotionMmonitor支持團隊一鍵式呼叫將解決硬件和軟件相關問題:
典型應用簡介:
MotionMonitor在涉及人體運動研究的廣泛應用中提供實時解決方案。旨在分析人體運動的所有方面,從可能影響人體運動的外部刺激開始;響應該模擬的大腦活動的測量和可視化;然后測量和分析影響運動所需的肌肉募集;報告標準運動 學和由此產生的聯合力。刺激以各種格式進行監控,從一維目標到在WorldViz和Unity中創建的3D沉浸式虛擬。視覺刺激呈現在簡單的平面屏幕、頭戴式顯示器、立體投影屏幕和的Bertec沉浸式穹頂上。大腦活動從 3 個不同的 EEG 系 統同步捕獲,提供輕松識別事件和關聯運動的能力。所有的 EMG 系統都對肌肉募集進行了物理測量。此外,可以使用具有用戶定義的優化程序的集成肌肉模型對單個肌肉活動進行建模。反向動力學來自 10 個不同的動作捕捉系統和所有的測力臺生產商收集的數據。 軟件在用于捕獲數據的技術的廣度和它所包含的分析深度方面。
1、生物力學與生命科學

我們的方案裝置支持從骨科到運動機能學、運動科學、運動訓練、力量與調節和運動醫學的生命科學研究。功能包括:
多種可視化方法,以有效的方式顯示您需要的數據,包括文本;條形圖或時間序列圖;動畫;或 3D 可視化。
無需編程即可從下拉菜單中獲取原始和處理過的數據,例如運動學和動力學。用戶定義的公式和腳本允許對步態分析、平衡、伸手和抓握等進行特定于應用程序的分析。
各種生物力學建模功能,包括自定義關節中心定義和局部坐標系的能力。支持標準方法,例如國際生物力學協會 (ISB) 的建議和用戶定義的模型。可以跟蹤、分析和可視化手、足和脊柱的各個骨骼。
CT-MRI 配準,用于創建具有特定主題骨骼幾何形狀的 3D 渲染。解剖標志可以從掃描中自動提取并用于定義生物力學模型。
集成肌肉建模,使用用戶定義或導入的 OpenSim 模型,直接從運動捕捉數據中可視化和分析肌肉力和力矩。
支持多種運動捕捉技術,包括相機、慣性和電磁傳感器。多種運動學技術可以組合成一個實時混合運動捕捉系統,以同時利用每種技術的優勢。
二、神經科學與運動控制
三、康復與人體工程學:

我們的方案裝置可以協助師、運動訓練師和人體工程學專家進行評估、篩查和再培訓:
實時信息提供了評估績效并向工作人員或患者提供即時反饋的能力。
同步的外圍數據,例如 EMG 和測力臺,允許對可能導致運動的其他因素進行運動學之外的研究。
用戶定義的、圖標驅動的界面為您獨特的協議提供定制,以確保可靠和簡單的數據收集和分析。
實時生物反饋和虛擬現實,使用多種方式顯示數據,將評估擴展到訓練和行為改變。
原始的、處理過的或用戶定義的數據允許評估康復技術或工作場所環境的有效性。可以立即生成自定義報告以與臨床醫生、風險管理人員和其他人共享此數據。
在數據收集過程中,可以跟蹤、動畫和分析真實的物體,例如工具或茶杯,以監控工人或患者與周圍環境的互動。
定制的交鑰匙解決方案,包括便攜式系統,使用各種動作捕捉技術,允許在任何環境下收集數據。
四、運動生物力學

我們的方案裝置通過許多獨特的功能提供監控運動員和提高表現的能力,包括:
使用佳的運動跟蹤技術來跟蹤、動畫和分析運動員的運動和運動對象,如高爾夫、擊球、投球、網球、保齡球、騎自行車等。
執行運動特定分析以進行評估、篩選和重返賽場。
以各種方法訪問和可視化數據,包括報告摘要、條形圖和時間序列圖、自定義動畫和跟蹤。
使用音頻反饋為培訓和性能增強提供實時反饋。使用虛擬現實擴展實時反饋,為運動員創造身臨其境的體驗。
使用我們的運動監視器特殊用途應用程序對特定運動或與運動相關的運動進行簡化的數據收集和分析,例如:
運動監視器跳躍版: PT、AT 和教練的理想工具,可使用反向運動、深蹲或俯沖快速評估生物力學和神經肌肉性能。
棒球運動監視器:研究質量的動作捕捉解決方案,具有用于跟蹤和分析球員投球和擊球動作的簡化流程。
更多詳細配置方案,請咨詢產品顧問:李經理,18618101725
我公司另外同一站式細胞組織材料生物力學和生物打印等生物醫學工程科研服務-10年經驗支持,
紅外攝像頭一般采用RJ45接口,通過網線連接匯聚到交換機,再由交換機統一將數據轉發到計算機。
目前市面上生產紅外攝像頭的光學步態捕捉的公司有英國的Vicon公司、美國NaturalPoint公司、美國MotionAnalysis公司、中國的青瞳視覺公司等。NaturalPoint公司生產的Optitrack系統如圖1-5所示。
1.2.1.2基于3D深度攝像頭的動作捕捉
表1-1 3D深度攝像頭方案對比
利用結構光方案的產品有微軟公司推出的Kinect,其廣泛的應用在體感交互、人體骨架識別、步態分析等領域。
基本原理是首先找到圖像中移動的物體,然后會對移動的物體進行深度評估,識別出人體的部位,然后將其從背景環境中分割出來。分割之后要做的工作就是模式匹配,將其匹配到骨骼系統上。算法流程如圖1-7所示。
利用2D攝像頭實現3D運動軌跡的捕捉是目前的技術研究。2D攝像頭即平面攝像頭,沒有深度信息。目前基于2D攝像頭的動作捕捉主要采用卷積神經網路(CNN)將稀疏的2D人體姿態凸顯檢測的原理。但是此種捕捉方案需要長時間的運算,并不適合實時的運動分析,且輸出精度低。基于2D攝像頭的動作捕捉目前可以捕捉人體局部的運動姿態,且捕捉之間需要采集大量的數據樣本作為訓練數據集。2D攝像頭在深度信息的預測上存在著偏差,任何一點錯誤的數據都會導致很大的偏差,穩定性*差。的挑戰在于攝像頭的遮擋以及快速的運動都是2D攝像頭很難追蹤到的。其優點在于不需要任何的穿戴,且所需要的2D攝像頭觸手可得,成本*低,這對大眾化的應用是一個不錯的選擇。利用2D平面攝像頭的姿態捕捉應用如圖1-9所示。
基于MEMS慣性傳感器的動作捕捉系統的步態分析有很大的優勢,主要體現在由于慣性動作捕捉系統采用的是MEMS芯片,成本較低,每個芯片只需要十元左右,整套系統的價格在幾萬元級別。由于慣性動作捕捉系統是一種無源的系統,整套系統的重量在幾千克的范圍內,所以便于攜帶,且不需要架設繁雜的相機。慣性傳感器只需要開機后就可以使用,沒有繁雜的校準、標定等操作步驟,所以使用十分便捷。慣性動作捕捉系統不受使用環境的影響,不管在室內、還是室外都可以正常使用。 但是MEMS傳感器的精度相比于光學動作捕捉系統來講,精度較低,但對于大眾人群已經完全滿足其需求。由于MEMS式陀螺儀存在零偏且在動態情況下積分累計誤差會隨著時間的推移而產生較大的漂移。MEMS加速度計在不同的狀態下也存在誤差,特別是在高動態下。磁力計很容易受到強磁環境的干擾。但是這一系列的誤差問題都可以通過算法來補償。MEMS式慣性傳感器補償后的靜態精度一般可達到:俯仰角/橫滾角≤0.2°,偏航角≤1°;動態精度:俯仰角/橫滾角≤0.5°, 偏航角≤2°,步態位移誤差可達5%。已滿足步態參數計算的精度要求。
1.2.1.5其他技術路線
其他的技術路線還有基于聲學式的動作捕捉,基于電磁式的動作捕捉等。